Informação

Por que usar o cabo HVDC para transmissão de longa distância?


Em um moderno sistema de transmissão DC, apenas o link de transmissão é DC, o sistema de geração e o sistema de consumo ainda são AC. Na extremidade emissora da linha de transmissão, a energia CA do sistema CA é enviada ao retificador através do transformador conversor na estação conversora. O que transforma a energia CA de alta tensão em energia CC de alta tensão e a envia para a linha de transmissão CC.

The DC power is sent to the inverter in the converter station at the receiving end through the transmission line, which changes the high-voltage DC power into a high-voltage AC power line. And then transmits the power to the AC system through the converter transformer. In the DC transmission system, the inverter can be made to work in rectified or inverted state by controlling the converter.

HVDC Transmission Has Many Advantages Compared To AC Transmission

1. HVDC transmission line is significantly more economical. When transmitting the same power, the wire used in DC transmission lines is only 1/2 para 2/3 of that used in AC transmission. DC transmission line uses a two-wire system and compared with a three-wire system, three-phase AC transmission, under the same conditions of transmission line wire cross-section and current density. If the skin effect is not considered, the transmission line and insulation materials can be saved by about 1/3 of the same electric power.

If skin effect and various losses are taken into account, the cross-sectional area of the wire used to transmit the same power AC is greater than or equal to 1.33 times the cross-sectional area of the wire used for DC transmission. Portanto, the wire used for DC transmission is almost half of that used for AC transmission.

In cable transmission lines, high-voltage DC transmission lines do not generate capacitive currents, while AC transmission lines have capacitive currents, which cause losses. On some special occasions, such as when the transmission line passes through the strait, DC cables must be used.

Due to the coaxial capacitor formed between the cable core and the earth, the no-load capacitive current is extremely considerable in the AC high-voltage transmission line. In the DC transmission line, there is no capacitive current added to the cable because the voltage fluctuation is very small.

3. When DC transmission is used, the AC system at both ends of the line does not need to run synchronously, while AC transmission must run synchronously. When long-distance AC transmission is used, there is a significant difference in the phase of the currents at both ends of the AC transmission system.

These two factors cause the AC system to be unsynchronized and need to be adjusted with a complex and large compensation system and a very comprehensive technology. Otherwise, a strong loop current may be formed in the equipment and damage the equipment, or cause an outage due to unsynchronized operation.

When DC transmission lines are used to interconnect two AC systems, the AC grid at both ends can operate at their frequency and phase without synchronous adjustment.

4. HVDC power transmission system is easy to control and fast, and the loss in case of failure is smaller than that of AC transmission. If two AC systems are interconnected by AC lines, when a short circuit occurs on one side of the system, the other side has to deliver short-circuit current to the fault side.

Portanto, the ability of the original circuit breakers on both sides of the system to cut off the short-circuit current will be threatened and the circuit breakers need to be replaced. If the two AC systems are interconnected by a DC transmission line. The circuit power can be adjusted quickly and easily due to the use of silicon-controlled devices, the short-circuit current delivered by the DC transmission line to the short-circuited AC system is not large. And the short-circuit current of the fault side AC system is almost the same as when there is no interconnection. Portanto, it is not necessary to replace the original switch and current-carrying equipment on both sides.

5. In the HVDC transmission project, each pole is independently regulated and works without influence from each other.

Portanto, when one pole fails, only the faulty pole needs to be shut down and the other pole can still deliver at least 50% of the power. No entanto, in an AC transmission line, a permanent fault in any phase must result in a complete line outage.

zmswacables

Recent Posts

Africa-1 Submarine Cable Landing in Ras Ghareb, Egypt

The construction of global communication networks has entered a new era, particularly with the deployment

4 days ago

Tipos e aplicações de cabos em engenharia elétrica

Cables are an indispensable component in electrical engineering, playing critical roles across modern society, from

1 week ago

UE expande apoio energético à Ucrânia e à Moldávia

As winter approaches, energy demand across Europe is rising, and the European Union (EU) is

1 week ago

Forte tendência de demanda para o mercado de fibra óptica médica na Europa

The European medical fiber optics market is poised for strong growth, driven by the growing

2 weeks ago

2024 Análise Internacional do Preço do Cobre e 2025 Previsão

The international copper price in 2024 has shown a fluctuating upward trend, driven by multiple

2 weeks ago

O que são cabos resistentes a hidrocarbonetos? Em quais aplicativos eles podem ser usados?

Hydrocarbon-resistant cables are essential in environments exposed to various hydrocarbon substances like oils, fuels, e…

3 weeks ago